Pular para o conteúdo principal
Derivadas
Polinômiosa 1) G(r)=52r2-2
r-1 dG(r)
dr=dG(r)
dudu
dru = 2r2-2
r-1du
dr=(2r2-2)'(r-1)-(2r2-2)(r-1)'
(r-1)2du
dr=4r(r-1)-(2r2-2)
(r-1)2=4r2-4r-2r2+2
(r-1)2=2r2-4r+2
(r-1)2=2(r2-2r+1)
(r2-2r+1)=2dG
du=d
du(u1/5)=1
5u1
5-5
5=1
5u-4/5=1
5u4/5=1
55u4dG(r)
du=2
51
5(2r2-2
r-1)4, com r≠1ou ainda considerando os produtos notáveis, de tal modo que:2r2-2=2(r2-1)=2(r+1)(r-1)u(r)=2r2-2
r-1=2(r+1)(r-1)
(r-1)=2(r+1)du
dr=2G(u)=5udG
du=1
5u4/5=1
55u4dG
dr=dG
dudu
dr→dG
dr=1
55u4·2=2
5·1
5[2(r+1)]4 2) M(x)=x+x+xM(x)=(x+(x+x1/2)1/2)1/2dM
dx=1
2(x+(x+x1/2)1/2)1/2d
dx(x+x+x)dM
dx=1
2x+x+x(1 +1
2x+x+1
4xx+x)dM
dx=1
x+x+x(1
2+1
4x+x+1
8xx+x)dM
dx=1
x+x+x(1
2+1
4x+x(2x
2x)+1
8xx+x)dM
dx=1
x+x+x(1
2+2x+1
8xx+x)dM
dx=1
x+x+x(1
2(4xx+x
4xx+x)+2x+1
8xx+x)dM
dx=4xx+x)+2x+1
x+x+x 3) f(x)=adf
dx=d
dx(x3)·sin(1
x4)+x3·d
dx(sin(1
x4)d
dx(1
x4))df
dx=3x2sin(1
x4)+x3cos(1
x4)(-4x-5)df
dx=3x2sin(1
x4)-4
x2cos(1
x4)df
dx=df
dx(0)=0 Gilson Würz in Math
Comentários
Postar um comentário