Lista de exercícios sobre derivada paramétrica. Cada item possui sua respectiva resposta
1 - $y = 9*t**2 - 4*t - 8$ e $x = t**2 - 7*t + 6$.
\\ $ dy/dx = (18*t - 4)/(2*t - 7)$. \\ 2 - $y = 5*t**2 + 8*t + 3$ e $x = 3*t**2 + 5*t + 7$. \\ $ dy/dx = (10*t + 8)/(6*t + 5)$. \\ 3 - $y = -7*t**2 + 7*t + 4$ e $x = -t**2 + 2*t + 9$. \\ $ dy/dx = (7 - 14*t)/(2 - 2*t)$. \\ 4 - $y = -9*t**2 - 10*t - 9$ e $x = -3*t**2 + 9*t + 8$. \\ $ dy/dx = (-18*t - 10)/(9 - 6*t)$. \\ 5 - $y = -4*t**2 + 8*t - 6$ e $x = -t**2 - 8*t + 8$. \\ $ dy/dx = (8 - 8*t)/(-2*t - 8)$. \\ 6 - $y = 3*t - 5$ e $x = 4*t**2 - 4*t + 1$. \\ $ dy/dx = 3/(8*t - 4)$. \\ 7 - $y = 8*t - 8$ e $x = -5*t**2 + 9*t + 8$. \\ $ dy/dx = 8/(9 - 10*t)$. \\ 8 - $y = -7*t**2 + 6*t + 8$ e $x = 5*t**2 - 5*t + 7$. \\ $ dy/dx = (6 - 14*t)/(10*t - 5)$. \\ 9 - $y = 7*t**2 - 8*t + 7$ e $x = -6*t**2 + 9*t + 1$. \\ $ dy/dx = (14*t - 8)/(9 - 12*t)$. \\ 10 - $y = -6*t**2 - 4*t - 5$ e $x = 6*t**2 - 5*t + 3$. \\ $ dy/dx = (-12*t - 4)/(12*t - 5)$. \\ 11 - $y = -4*t**2 - 9*t + 6$ e $x = -10*t**2 + t + 3$. \\ $ dy/dx = (-8*t - 9)/(1 - 20*t)$. \\ 12 - $y = -4*t**2 + 4*t + 2$ e $x = -3*t**2 - 10*t + 8$. \\ $ dy/dx = (4 - 8*t)/(-6*t - 10)$. \\ 13 - $y = -9*t**2 - 6*t + 4$ e $x = t**2 + 7*t + 10$. \\ $ dy/dx = (-18*t - 6)/(2*t + 7)$. \\ 14 - $y = -5*t**2 - 4*t + 9$ e $x = -7*t**2 - 9*t + 10$. \\ $ dy/dx = (-10*t - 4)/(-14*t - 9)$. \\ 15 - $y = -8*t**2 - 8*t + 2$ e $x = -3*t**2 + 2*t + 4$. \\ $ dy/dx = (-16*t - 8)/(2 - 6*t)$. \\ 16 - $y = -5*t**2 - 6*t + 5$ e $x = -6*t**2 + 9*t + 2$. \\ $ dy/dx = (-10*t - 6)/(9 - 12*t)$. \\ 17 - $y = -t**2 + 10*t + 1$ e $x = 7*t**2 - 8*t + 8$. \\ $ dy/dx = (10 - 2*t)/(14*t - 8)$. \\ 18 - $y = 3*t**2 - 6*t - 6$ e $x = -6*t**2 - 2*t + 8$. \\ $ dy/dx = (6*t - 6)/(-12*t - 2)$. \\ 19 - $y = 6*t**2 + 10*t + 10$ e $x = 6*t**2 + 3*t + 7$. \\ $ dy/dx = (12*t + 10)/(12*t + 3)$. \\ 20 - $y = 6*t**2 - 2*t + 10$ e $x = -9*t**2 - 2*t + 6$. \\ $ dy/dx = (12*t - 2)/(-18*t - 2)$. \\ 21 - $y = 4*t**2 - 10*t + 3$ e $x = -7*t**2 - 3*t + 5$. \\ $ dy/dx = (8*t - 10)/(-14*t - 3)$. \\ 22 - $y = -7*t**2 + 5*t + 6$ e $x = 4 - 7*t$. \\ $ dy/dx = 2*t - 5/7$. \\ 23 - $y = 6*t**2 + t - 6$ e $x = 2*t**2 + 5*t + 9$. \\ $ dy/dx = (12*t + 1)/(4*t + 5)$. \\ 24 - $y = 7*t**2 + 9*t - 7$ e $x = -2*t**2 + 2*t + 10$. \\ $ dy/dx = (14*t + 9)/(2 - 4*t)$. \\ 25 - $y = 3*t**2 + 2*t - 7$ e $x = -10*t**2 - 9*t + 8$. \\ $ dy/dx = (6*t + 2)/(-20*t - 9)$. \\ 26 - $y = t**2 + 2*t + 2$ e $x = 3*t**2 + 6*t + 6$. \\ $ dy/dx = (2*t + 2)/(6*t + 6)$. \\ 27 - $y = 5*t**2 + 6*t + 6$ e $x = -4*t**2 + 4*t + 8$. \\ $ dy/dx = (10*t + 6)/(4 - 8*t)$. \\ 28 - $y = 2*t**2 + 10*t + 1$ e $x = -t**2 - 2*t + 4$. \\ $ dy/dx = (4*t + 10)/(-2*t - 2)$. \\ 29 - $y = t**2 - 5*t - 8$ e $x = 5*t**2 + 7*t + 8$. \\ $ dy/dx = (2*t - 5)/(10*t + 7)$. \\ 30 - $y = -2*t**2 - 8*t + 2$ e $x = -8*t**2 + 5*t + 6$. \\ $ dy/dx = (-4*t - 8)/(5 - 16*t)$. \\ 31 - $y = -4*t**2 - 10*t + 1$ e $x = -2*t**2 + t + 1$. \\ $ dy/dx = (-8*t - 10)/(1 - 4*t)$. \\ 32 - $y = -9*t**2 - 10*t + 3$ e $x = -6*t**2 + 3*t + 10$. \\ $ dy/dx = (-18*t - 10)/(3 - 12*t)$. \\ 33 - $y = -10*t**2 - 7*t - 9$ e $x = -5*t**2 - t + 1$. \\ $ dy/dx = (-20*t - 7)/(-10*t - 1)$. \\ 34 - $y = -4*t**2 - 3*t + 1$ e $x = 7*t**2 + 2*t + 7$. \\ $ dy/dx = (-8*t - 3)/(14*t + 2)$. \\ 35 - $y = -3*t**2 - 4*t + 1$ e $x = 10 - 2*t$. \\ $ dy/dx = 3*t + 2$. \\ 36 - $y = -6*t**2 + 9*t - 9$ e $x = -2*t**2 + 8*t + 1$. \\ $ dy/dx = (9 - 12*t)/(8 - 4*t)$. \\ 37 - $y = -10*t - 2$ e $x = -4*t**2 - 6*t + 2$. \\ $ dy/dx = -10/(-8*t - 6)$. \\ 38 - $y = -8*t**2 - 8*t + 5$ e $x = -8*t**2 + t + 10$. \\ $ dy/dx = (-16*t - 8)/(1 - 16*t)$. \\ 39 - $y = -9*t**2 - 10*t - 7$ e $x = -4*t**2 + 7*t + 1$. \\ $ dy/dx = (-18*t - 10)/(7 - 8*t)$. \\ 40 - $y = t**2 - 10*t + 7$ e $x = 2*t**2 - 9*t + 10$. \\ $ dy/dx = (2*t - 10)/(4*t - 9)$. \\ 41 - $y = -7*t**2 - 2*t - 3$ e $x = -5*t**2 - 2*t + 7$. \\ $ dy/dx = (-14*t - 2)/(-10*t - 2)$. \\ 42 - $y = 7*t**2 + 6*t + 5$ e $x = -3*t**2 - 6*t + 7$. \\ $ dy/dx = (14*t + 6)/(-6*t - 6)$. \\ 43 - $y = -7*t**2 - 8*t + 4$ e $x = -t**2 + 8*t + 4$. \\ $ dy/dx = (-14*t - 8)/(8 - 2*t)$. \\ 44 - $y = 2*t**2 + 4*t + 6$ e $x = 10*t**2 + 4*t + 5$. \\ $ dy/dx = (4*t + 4)/(20*t + 4)$. \\ 45 - $y = 3*t**2 + 4*t + 3$ e $x = 2*t**2 + 5*t + 3$. \\ $ dy/dx = (6*t + 4)/(4*t + 5)$. \\ 46 - $y = -10*t**2 - 2*t + 9$ e $x = 8*t**2 - 8*t + 1$. \\ $ dy/dx = (-20*t - 2)/(16*t - 8)$. \\ 47 - $y = -9*t**2 - 2*t - 9$ e $x = 7*t**2 + 10*t + 1$. \\ $ dy/dx = (-18*t - 2)/(14*t + 10)$. \\ 48 - $y = -7*t**2 - 5*t - 1$ e $x = 4*t**2 + 6*t + 7$. \\ $ dy/dx = (-14*t - 5)/(8*t + 6)$. \\ 49 - $y = -8*t**2 + 2*t - 9$ e $x = -t**2 - 5*t + 1$. \\ $ dy/dx = (2 - 16*t)/(-2*t - 5)$. \\ 50 - $y = 4*t**2 - 2*t + 6$ e $x = 6*t**2 - 8*t + 7$. \\ $ dy/dx = (8*t - 2)/(12*t - 8)$. \\ 51 - $y = -10*t**2 + t - 6$ e $x = 8*t**2 + 9*t + 10$. \\ $ dy/dx = (1 - 20*t)/(16*t + 9)$. \\ 52 - $y = -3*t**2 + 4*t - 10$ e $x = -4*t**2 - 6*t + 3$. \\ $ dy/dx = (4 - 6*t)/(-8*t - 6)$. \\ 53 - $y = 7*t**2 - 8*t - 5$ e $x = -2*t**2 + t + 1$. \\ $ dy/dx = (14*t - 8)/(1 - 4*t)$. \\ 54 - $y = 2*t**2 + 7*t - 3$ e $x = -10*t**2 + 6*t + 3$. \\ $ dy/dx = (4*t + 7)/(6 - 20*t)$. \\ 55 - $y = -2*t**2 + t - 7$ e $x = -4*t**2 + t + 7$. \\ $ dy/dx = (1 - 4*t)/(1 - 8*t)$. \\ 56 - $y = 7*t**2 - 2*t - 3$ e $x = -t**2 - 4*t + 8$. \\ $ dy/dx = (14*t - 2)/(-2*t - 4)$. \\ 57 - $y = 10*t**2 - 2*t - 6$ e $x = 9*t**2 - 5*t + 5$. \\ $ dy/dx = (20*t - 2)/(18*t - 5)$. \\ 58 - $y = t**2 + 9*t - 10$ e $x = -7*t**2 - 8*t + 2$. \\ $ dy/dx = (2*t + 9)/(-14*t - 8)$. \\ 59 - $y = 7*t**2 + 2*t + 10$ e $x = -6*t**2 - 6*t + 1$. \\ $ dy/dx = (14*t + 2)/(-12*t - 6)$. \\ 60 - $y = 6*t**2 + 5*t - 10$ e $x = -10*t**2 - 7*t + 10$. \\ $ dy/dx = (12*t + 5)/(-20*t - 7)$. \\ 61 - $y = 4*t**2 + 4*t - 9$ e $x = 5*t**2 - 10*t + 8$. \\ $ dy/dx = (8*t + 4)/(10*t - 10)$. \\ 62 - $y = 9*t**2 - 3*t + 10$ e $x = -9*t**2 + 5*t + 3$. \\ $ dy/dx = (18*t - 3)/(5 - 18*t)$. \\ 63 - $y = 10*t**2 - 9*t + 7$ e $x = -9*t**2 + t + 1$. \\ $ dy/dx = (20*t - 9)/(1 - 18*t)$. \\ 64 - $y = -5*t**2 + 10*t - 1$ e $x = 7*t**2 - 9*t + 3$. \\ $ dy/dx = (10 - 10*t)/(14*t - 9)$. \\ 65 - $y = 4*t**2 - 6*t - 7$ e $x = 9*t**2 + 9*t + 6$. \\ $ dy/dx = (8*t - 6)/(18*t + 9)$. \\ 66 - $y = 9*t**2 + 4*t + 1$ e $x = 2*t**2 + 2*t + 1$. \\ $ dy/dx = (18*t + 4)/(4*t + 2)$. \\ 67 - $y = 5*t**2 - 7*t - 4$ e $x = 10*t**2 + 6*t + 2$. \\ $ dy/dx = (10*t - 7)/(20*t + 6)$. \\ 68 - $y = 9*t**2 - 5*t - 3$ e $x = 3*t**2 - t + 4$. \\ $ dy/dx = (18*t - 5)/(6*t - 1)$. \\ 69 - $y = -7*t**2 + t - 5$ e $x = t**2 + 3*t + 4$. \\ $ dy/dx = (1 - 14*t)/(2*t + 3)$. \\ 70 - $y = 4*t - 6$ e $x = -4*t**2 + 5*t + 10$. \\ $ dy/dx = 4/(5 - 8*t)$. \\ 71 - $y = 8 - 4*t$ e $x = t**2 + 8*t + 3$. \\ $ dy/dx = -4/(2*t + 8)$. \\ 72 - $y = 6*t**2 - 3*t + 3$ e $x = -6*t**2 - 9*t + 8$. \\ $ dy/dx = (12*t - 3)/(-12*t - 9)$. \\ 73 - $y = -5*t**2 - 8*t - 10$ e $x = 9*t**2 - t + 2$. \\ $ dy/dx = (-10*t - 8)/(18*t - 1)$. \\ 74 - $y = -t**2 - 9*t + 10$ e $x = -9*t**2 + 8*t + 8$. \\ $ dy/dx = (-2*t - 9)/(8 - 18*t)$. \\ 75 - $y = -10*t**2 + 8*t + 4$ e $x = -6*t**2 + 5*t + 1$. \\ $ dy/dx = (8 - 20*t)/(5 - 12*t)$. \\ 76 - $y = 7*t**2 + 7*t + 9$ e $x = 7*t**2 + 4*t + 3$. \\ $ dy/dx = (14*t + 7)/(14*t + 4)$. \\ 77 - $y = -3*t**2 - 7*t + 6$ e $x = -t**2 - 9*t + 9$. \\ $ dy/dx = (-6*t - 7)/(-2*t - 9)$. \\ 78 - $y = -8*t**2 - 8*t + 10$ e $x = 10*t**2 - 5*t + 2$. \\ $ dy/dx = (-16*t - 8)/(20*t - 5)$. \\ 79 - $y = -9*t**2 + 8*t - 4$ e $x = t**2 + 8*t + 3$. \\ $ dy/dx = (8 - 18*t)/(2*t + 8)$. \\ 80 - $y = 2*t**2 + 6*t - 9$ e $x = 10*t**2 + t + 6$. \\ $ dy/dx = (4*t + 6)/(20*t + 1)$. \\ 81 - $y = -2*t**2 - t + 1$ e $x = -8*t**2 + 2*t + 4$. \\ $ dy/dx = (-4*t - 1)/(2 - 16*t)$. \\ 82 - $y = 4*t - 8$ e $x = -7*t**2 - 5*t + 6$. \\ $ dy/dx = 4/(-14*t - 5)$. \\ 83 - $y = -7*t**2 + 2*t + 10$ e $x = -4*t**2 + 2*t + 1$. \\ $ dy/dx = (2 - 14*t)/(2 - 8*t)$. \\ 84 - $y = 9*t**2 - 10*t + 5$ e $x = 9*t**2 - 9*t + 7$. \\ $ dy/dx = (18*t - 10)/(18*t - 9)$. \\ 85 - $y = 3*t**2 - 7*t - 9$ e $x = -4*t**2 - 2*t + 8$. \\ $ dy/dx = (6*t - 7)/(-8*t - 2)$. \\ 86 - $y = 3*t**2 + 7*t - 10$ e $x = 3*t**2 - 3*t + 3$. \\ $ dy/dx = (6*t + 7)/(6*t - 3)$. \\ 87 - $y = 2*t**2 - 5*t - 10$ e $x = 10*t**2 + 2*t + 6$. \\ $ dy/dx = (4*t - 5)/(20*t + 2)$. \\ 88 - $y = -9*t**2 + 5*t + 6$ e $x = -6*t**2 + 4*t + 6$. \\ $ dy/dx = (5 - 18*t)/(4 - 12*t)$. \\ 89 - $y = -10*t**2 + t - 4$ e $x = 10*t**2 + 8*t + 10$. \\ $ dy/dx = (1 - 20*t)/(20*t + 8)$. \\ 90 - $y = -3*t**2 - 8*t - 3$ e $x = 7*t**2 + 6*t + 8$. \\ $ dy/dx = (-6*t - 8)/(14*t + 6)$. \\ 91 - $y = 7*t**2 + 10*t - 5$ e $x = 6*t**2 + t + 8$. \\ $ dy/dx = (14*t + 10)/(12*t + 1)$. \\ 92 - $y = -8*t**2 + 8*t + 3$ e $x = -10*t**2 + t + 8$. \\ $ dy/dx = (8 - 16*t)/(1 - 20*t)$. \\ 93 - $y = 6*t**2 + 8*t - 4$ e $x = -5*t**2 - 8*t + 1$. \\ $ dy/dx = (12*t + 8)/(-10*t - 8)$. \\ 94 - $y = 4*t**2 + 4*t + 3$ e $x = 8*t**2 - 2*t + 1$. \\ $ dy/dx = (8*t + 4)/(16*t - 2)$. \\ 95 - $y = 5*t - 8$ e $x = -5*t**2 + t + 10$. \\ $ dy/dx = 5/(1 - 10*t)$. \\ 96 - $y = -7*t**2 - 7*t - 4$ e $x = 8*t**2 + 8*t + 7$. \\ $ dy/dx = (-14*t - 7)/(16*t + 8)$. \\ 97 - $y = 6*t**2 + 4*t + 2$ e $x = -5*t**2 - 4*t + 7$. \\ $ dy/dx = (12*t + 4)/(-10*t - 4)$. \\ 98 - $y = 5*t**2 - t + 6$ e $x = -10*t**2 - 8*t + 6$. \\ $ dy/dx = (10*t - 1)/(-20*t - 8)$. \\ 99 - $y = 3*t**2 + 8*t - 9$ e $x = -6*t**2 + 4*t + 10$. \\ $ dy/dx = (6*t + 8)/(4 - 12*t)$. \\ 100 - $y = 3*t**2 - 7*t - 4$ e $x = 4*t**2 - 9*t + 2$. \\ $ dy/dx = (6*t - 7)/(8*t - 9)$. \\
Comentários
Postar um comentário